Third Grade (Go Math) ## 4th Nine Weeks: Scope and Sequence | Content Standards | Dates
Taught | % of
Students
scoring
over 70% | Dates
Re-taught
(Optional) | Formative and Summative Assessments/ (Any Additional Comments Optional) | |---|-----------------|---|----------------------------------|---| | 7. Fluently multiply and divide within 100, using strategies such as the | | | | | | relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, | | | | | | one knows $40 / 5 = 8$) or properties of operations. By the end of Grade 3, know | | | | | | from memory all products of two one-digit numbers. [3.OA.7] | | | | | | 8. Solve two-step word problems using the four operations. Represent these | | | | | | problems using equations with a letter standing for the unknown quantity. | | | | | | Assess the reasonableness of answers using mental computation and estimation | | | | | | strategies including rounding. [3.OA.8] | | | | | | 11. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between | | | | | | addition and subtraction. [3.NBT.2] | | | | | | 17. Measure and estimate liquid volumes and masses of objects using | | | | | | standard units of gram (g), kilograms (kg), and liters (l). Add, subtract, | | | | | | multiply, or divide to solve one-step word problems involving masses or | | | | | | volumes that are given in the same units, e.g., by using drawings (such as a | | | | | | beaker with a measurement scale) to represent the problem. | | | | | | [3.MD.2] | | | | | | 19. Generate measurement data by measuring lengths using rulers marked | | | | | | with halves and fourths of an inch. Show the data by making a line plot, where | | | | | | the horizontal scale is marked off in appropriate units – whole numbers, halves, | | | | | | or quarters. [3.MD.4] | | | | | | 18. Draw a scaled picture graph and a scaled bar graph to represent a data set | | | | | | with several categories. Solve one- and two-step "how many more" and "how | | | | | | many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might | | | | | | represent 5 pets. [3.MD.3] | | | | | | 23. Solve real world and mathematical problems involving perimeters of | | | | | | polygons, including finding the perimeter given the side lengths, finding an | | | | | | unknown side length, and exhibiting rectangles with the same perimeter and | | | | | | different areas or with the same area and different perimeters. [3.MD.8] | | | | | | 3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. [3.OA.3] 10. Use place value understanding to round whole numbers to the nearest 10 or 100. [3.NBT.1] | | |--|--| | 22. Relate area to the operations of multiplication and addition. [3.MD.7] Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a x b and a x c. Use area models to represent the distributive property in mathematical reasoning. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real word problems. | | | 12. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations. [3.NBT.3] | |